Рекурсивный акроним словосочетания «PHP: Hypertext Preprocessor»
Добро пожаловать на форум PHP программистов!
За последние 24 часа нас посетили 16486 программистов и 1671 робот. Сейчас ищут 1658 программистов ...
Math_Complex
Вернуться к: Математика
- Class Summary Math_Complex — Math_Complex: class to represent an manipulate complex numbers (z = a + b*i)
- constructor Math_Complex::Math_Complex — Constructor for Math_Complex
- Math_Complex::abs — Returns the magnitude (also referred as norm) of the number
- Math_Complex::abs2 — Returns the square of the magnitude of the number
- Math_Complex::angle — Returns the angle (argument) associated with the complex number Alias of Math_Complex::arg()
- Math_Complex::arg — Returns the argument of the complex number
- Math_Complex::getIm — Returns the imaginary part of the complex number
- Math_Complex::getReal — Returns the real part of the complex number
- Math_Complex::norm — Returns the norm of the number Alias of Math_Complex::abs()
- Math_Complex::toString — Simple string representation of the number
- Class Summary Math_ComplexOp — Math_ComplexOp: static class to operate on Math_Complex objects
- Math_ComplexOp::acos — Calculates the inverse cosine of a complex number: z = acos(c1)
- Math_ComplexOp::acosh — Calculates the inverse hyperbolic cosine of a complex number: z = acosh(c1)
- Math_ComplexOp::acot — Calculates the inverse cotangent of a complex number: z = acot(c1)
- Math_ComplexOp::acoth — Calculates the inverse hyperbolic cotangent of a complex number: z = acoth(c1)
- Math_ComplexOp::acsc — Calculates the inverse cosecant of a complex number: z = acsc(c1)
- Math_ComplexOp::acsch — Calculates the inverse hyperbolic cosecant of a complex number: z = acsch(c1)
- Math_ComplexOp::add — Returns the sum of two complex numbers: z = c1 + c2
- Math_ComplexOp::areEqual — Determines if is c1 == c2:
- Math_ComplexOp::asec — Calculates the inverse secant of a complex number: z = asec(c1)
- Math_ComplexOp::asech — Calculates the inverse hyperbolic secant of a complex number: z = asech(c1)
- Math_ComplexOp::asin — Calculates the inverse sine of a complex number: z = asin(c1)
- Math_ComplexOp::asinAlt — Calculates the inverse sine of a complex number: z = asinAlt(c1) Uses an alternative algorithm
- Math_ComplexOp::asinh — Calculates the inverse hyperbolic sine of a complex number: z = asinh(c1)
- Math_ComplexOp::asinReal — Calculates the complex inverse sine of a real number: z = asinReal(r):
- Math_ComplexOp::atan — Calculates the inverse tangent of a complex number: z = atan(c1):
- Math_ComplexOp::atanh — Calculates the inverse hyperbolic tangent of a complex number: z = atanh(c1)
- Math_ComplexOp::conjugate — Calculates the conjugate of a complex number: z = conj(c1)
- Math_ComplexOp::cos — Calculates the cosine of a complex number: z = cos(c1)
- Math_ComplexOp::cosh — Calculates the hyperbolic cosine of a complex number: z = cosh(c1)
- Math_ComplexOp::cot — Calculates the cotangent of a complex number: z = cot(c1)
- Math_ComplexOp::coth — Calculates the hyperbolic cotangent of a complex number: z = coth(c1)
- Math_ComplexOp::createFromPolar — Converts a polar complex z = r*exp(theta*i) to z = a + b*i
- Math_ComplexOp::csc — Calculates the cosecant of a complex number: z = csc(c1)
- Math_ComplexOp::csch — Calculates the hyperbolic cosecant of a complex number: z = csch(c1)
- Math_ComplexOp::div — Returns the division of two complex numbers: z = c1 * c2
- Math_ComplexOp::exp — Calculates the exponential of a complex number: z = exp(c1)
- Math_ComplexOp::inverse — Calculates the inverse of a complex number: z = 1/c1
- Math_ComplexOp::isComplex — Checks if a given object is an instance of PEAR::Math_Complex
- Math_ComplexOp::log — Calculates the logarithm (base 2) of a complex number: z = log(c1)
- Math_ComplexOp::log10 — Calculates the logarithm (base 10) of a complex number: z = log10(c1)
- Math_ComplexOp::logBase — Returns the logarithm of base c2 of the complex number c1
- Math_ComplexOp::mult — Returns the product of two complex numbers: z = c1 * c2
- Math_ComplexOp::multIm — Returns the product of a complex number and an imaginary number if: x = b + c*i, y = a*i; then: z = x * y = multIm(x, a)
- Math_ComplexOp::multReal — Multiplies a complex number by a real number: z = realnumber * c1
- Math_ComplexOp::negative — Calculates the negative of a complex number: z = -c1
- Math_ComplexOp::pow — Returns the complex power of two complex numbers: z = c1^c2
- Math_ComplexOp::powReal — Returns the exponentiation of a complex numbers to a real power: z = c1^(real)
- Math_ComplexOp::sec — Calculates the secant of a complex number: z = sec(c1)
- Math_ComplexOp::sech — Calculates the hyperbolic secant of a complex number: z = sech(c1)
- Math_ComplexOp::sin — Calculates the sine of a complex number: z = sin(c1)
- Math_ComplexOp::sinh — Calculates the hyperbolic sine of a complex number: z = sinh(c1)
- Math_ComplexOp::sqrt — Calculates the complex square root of a complex number: z = sqrt(c1)
- Math_ComplexOp::sqrtReal — Calculates the complex square root of a real number: z = sqrt(realnumber)
- Math_ComplexOp::sub — Returns the difference of two complex numbers: z = c1 - c2
- Math_ComplexOp::tan — Calculates the tangent of a complex number: z = tan(c1)
- Math_ComplexOp::tanh — Calculates the hyperbolic tangent of a complex number: z = tanh(c1)
Вернуться к: Математика