- Россияне стали экономить на наушниках —... (810)
- Неизвестный украл у Европейского... (1622)
- УАЗ на «автомате» и мотором от... (1189)
- MediaTek представила Dimensity 7100 — 6-нм... (858)
- Мозг пассажира включили в контур управления... (1039)
- В Китае создали самую мощную в мире... (1163)
- Роскошный 1400-сильный Zeekr 9X (первое авто... (871)
- «Проведу тут свой Новый год»: суровый... (1201)
- BMW X5 нового поколения замечен на зимних... (990)
- Представительский седан, новая версия SU7 и... (991)
- Декабрь и весь 2025 год вошли в историю по... (852)
- Представлен Redmi Note 15 Pro New... (771)
- 2,5 кВт общей мощности за 35 долларов.... (1183)
- Мировым поставкам ноутбуков предсказали... (1022)
- SoftBank успела завершить рекордные... (927)
- Представлен первый роутер Dreame: Wi-Fi 7 до... (1118)
Компания Nvidia представила масштабируемый суперкомпьютер с GPU-ускорением в облаке Microsoft Azure
Дата: 2019-11-19 12:17
Компания Nvidia сегодня анонсировала доступность в облаке Microsoft Azure нового типа суперкомпьютера, в котором используется ускорение средствами GPU. Уточним, что пока инстансы NDv2 доступны для предварительного просмотра, но их уже можно объединять в кластеры.
По словам Nvidia, новое решение, предназначенное для требовательных суперкомпьютерных вычислений, задач искусственного интеллекта и машинного обучения, значительно превосходит традиционные решения на базе CPU по производительности и цене.
Как утверждается, всего один инстанс NDv2 обеспечивает производительность на порядок выше по сравнению с традиционным суперкомпьютерным узлом без ускорения средствами GPU в таких приложениях, как глубокое обучение. Производительность можно линейно наращивать, объединяя сотни инстансов.
Заказчики могут быстро развернуть несколько инстансов и обучить сложные модели ИИ за считанные часы. Им доступно до 800 GPU Nvidia V100 с тензорными ядрами, которые связаны в единую сеть соединениями Mellanox InfiniBand. По сути, впервые у разработчиков появляется возможность, не покидая рабочее место, арендовать суперкомпьютер, сопоставимый с громоздкой локальной системой, сборка которой может занять месяцы.
Для NDv2 характерна оптимизация под ПО для машинного обучения и фреймворки глубокого обучения, включая TensorFlow, PyTorch и MxNet из репозитария контейнеров Nvidia NGC и Azure Marketplace. Репозитарий также поддерживает пакеты Helm для установки программ ИИ на кластерах Kubernetes.
КомментироватьПодробнее на iXBT
Предыдущие новости
Motorola Razr — единственный гибкий смартфон, у которого не видно складку на экране
Возможно, когда появились первые слухи про реинкарнацию Motorola Razr в виде гибкого смартфона, многие не верили, что такое устройство выйдет. Однако оно вышло. Смартфон получился дешевле Samsung Galaxy Fold или Huawei Mate X, но при этом и намного менее оснащённым. Однако журналист Phone Arena утверждает, что это не имеет никакого значения, потому что новый Motorola Razr...
с обновила «старые» умные часы и они стали не хуже новейших Galaxy Watch Active 2
В последние несколько лет умные часы Samsung оснащались вращающимся физическим безелем, который использовался для управления интерфейсом. К сожалению, он пропал в моделях Galaxy Watch Active и Galaxy Watch Active 2 текущего года. Впрочем, в Galaxy Watch Active 2 корейский производитель представил новый сенсорный безель, имитирующий работу вращающегося аппаратного безеля. В...
Представлена профессиональная видеокарта Radeon Pro W5700 — мощнее и дешевле, чем Nvidia Quadro RTX 4000
Только мы успели узнать о том, что AMD готовит профессиональную 3D-карту Radeon Pro W5700, как адаптер уже анонсировали. Итак, Radeon Pro W5700 — первый профессиональный графический ускоритель AMD с GPU поколения Navi, не считая мобильных карт в новом MacBook Pro, но это совершенно разные продукты. Radeon Pro W5700 основана на GPU Navi 10 с 2304 активными потоковыми...
Sony раскрыла функции картриджей в PlayStation 5
Напомним, что выход пятого поколения консоли ожидается в конце 2020 года. Что касается цены, то предполагается, что PlayStation 5 будет стоить порядка 500 евро или около 35 000