- Выбор есть — десять новых машин дешевле 1,7... (31)
- Китай построит гигантскую солнечную станцию... (28)
- Представлен новый Renault Grand... (43)
- «Он смотрит в прошлое»: глава Take-Two... (29)
- Космический корабль SpaceX Crew Dragon с... (32)
- В Рунете — сбой. Пользователи Telegram... (42)
- Astroscale, Northrop Grumman и Orbit Fab... (33)
- Пять причин полюбить HONOR Magic... (59)
- Создатели ChatGPT подарили суперкачественный... (50)
- ИИ озвучивает мысли полностью парализованных... (117)
- «Авито» инвестирует 12 млрд рублей в... (54)
- Топовый камерофон Vivo X200 Ultra, который... (49)
- Дилеры пытаются всячески избавиться от... (20)
- Автодилеры РФ идут на креатив, чтобы... (49)
- Перечислены все модели iPhone, которые будут... (61)
- SatNet на орбите: аппарат для спутниковых... (67)
Учёные обнаружили секрет более эффективного туннелирования электронов в солнечных элементах
Дата: 2024-09-25 17:01
Недавнее исследование, опубликованное в журнале Journal of Photonics for Energy, открывает новые возможности для создания более эффективных солнечных элементов с горячим носителем, которые могут превзойти предел эффективности Шокли-Квайссера. Исследователи изучили состояния и их влияние на туннелирование электронов с помощью эмпирического метода псевдопотенциала, который позволяет глубже понять процесс туннелирования и может проложить путь к созданию более эффективных солнечных элементов.
Предел эффективности Шокли-Квайссера — это теоретический предел эффективности солнечных элементов, составляющий около 33,7% для солнечных элементов, работающих при комнатной температуре, который определяет максимальную эффективность преобразования солнечного излучения в электрическую энергию и является фундаментальным ограничением для солнечных элементов, которое не может быть превышено с помощью традиционных методов, но может быть улучшено с помощью новых материалов и технологий.

Солнечные элементы с горячим носителем представляют собой концепцию, которая была предложена несколько десятилетий назад и долгое время рассматривалась как потенциальный прорыв в технологии солнечной энергетики. Однако практическая реализация столкнулась со значительными трудностями, особенно в управлении быстрым извлечением горячих электронов через материальные интерфейсы.
Недавние исследования были сосредоточены на использовании дополнительных энергетических уровней в зоне проводимости для временного хранения горячих электронов перед сбором. Однако эксперименты выявили паразитный барьер на гетероструктурном интерфейсе между поглощающим и экстракционным слоями, который усложняет процесс передачи. Этот барьер усложняет процесс передачи, который происходит в реальном пространстве, а не в импульсном пространстве. Когда энергетические зоны двух материалов не идеально выровнены, электроны могут обойти этот барьер посредством туннелирования, процесса, на который влияют сложные зонные структуры.
Исследователи изучили эти состояния и их влияние на туннелирование электронов с помощью эмпирического метода псевдопотенциала, который вычисляет энергетические зоны в импульсном пространстве и сопоставляет их с экспериментальными данными по критическим точкам. Этот подход позволяет глубже понять физику, которая позволяет извлекать горячие носители между состояниями долин носителей и через гетероинтерфейсы.

Результаты исследования показали, что коэффициент туннелирования, который измеряет лёгкость, с которой электроны могут проходить через барьер, экспоненциально велик в структурах индий-алюминий-арсенид (InAlAs) и индий-галлий-арсенид (InGaAs) из-за несоответствия энергетических зон этих двух материалов. Однако ситуация значительно улучшается в системе, включающей материалы AlGaAs и арсенид галлия (GaAs), в которой алюминиевый состав в барьере создает вырождение в дополнительных энергетических уровнях с более низкой энергией.
Коэффициент туннелирования для переноса электронов между AlGaAs и GaAs может достигать 0,5 или даже 0,88, в зависимости от конкретного состава используемого AlGaAs. Это предполагает гораздо более эффективный процесс переноса и потенциал для использования фотоэлектрических элементов долин и реализации солнечных элементов за пределами текущих ограничений одной запрещённой зоны.
В транзисторах с высокой подвижностью электронов, изготовленных из AlGaAs/GaAs, электроны обычно перемещаются из AlGaAs в GaAs. Однако горячие носители в GaAs могут получить достаточно энергии для перехода обратно в AlGaAs, — процесс, известный как перенос в реальном пространстве. Хотя это обычно нежелательно в транзисторах, это полезно для фотоэлектрических элементов, где эффективная передача и хранение горячих носителей имеет решающее значение.
По словам исследователей, «результаты этого исследования могут проложить путь к созданию более эффективных солнечных элементов с горячим носителем, которые могут превзойти предел эффективности Шокли-Квайссера».
Подробнее на iXBT
Предыдущие новости
Мобильный Gmail обзавёлся синей галочкой подтвержденного отправителя
Синие галочки, которые Google ввела для проверки отправителей писем в Gmail в прошлом году, теперь появились в приложениях для Android и iOS. Иллюстрация: Google Как поясняют в компании, если рядом с письмом в Gmail есть голубой значок, это означает, что подлинность владельца корпоративного адреса и фирменного логотипа проверили. Письма с подтвержденным отправителем проходят...
Microsoft представила ИИ-инструмент для защиты ИИ от галлюцинаций и ошибок
Microsoft представила новую функцию Content Safety в облачной инфраструктуре Azure — она направлена на борьбу со сбоями в работе генеративного искусственного интеллекта. Функция автоматически обнаруживает и даже исправляет ошибки в ответах моделей ИИ. Источник изображения:...
«Плеер.ру» перестал работать — это один из старейших отечественных интернет-магазинов электроники
Торгующий электроникой интернет-магазин «Плеер.ру», один из старейших в России, перестал работать, обратило внимание издание Shopper’s. На сайте появилось сообщение: «По техническим причинам магазин и отдел клиентской поддержки не работают», а контактные телефоны перестали отвечать. Источник изображения:...
Бывшая девушка Бэнкмана-Фрида за работу на FTX получила 2 года тюрьмы — ей грозил срок до 110 лет
В рамках громкого судебного разбирательства по делу о крахе криптовалютной биржи FTX бывший исполнительный директор Кэролайн Эллисон (Caroline Ellison) была приговорена к двум годам тюремного заключения. Несмотря на активное сотрудничество со следствием судья Льюис Каплан (Lewis Kaplan) счёл необходимым назначить реальный срок за участие в хищении $8 млрд клиентских...