- Первый пострелизный патч для Elden Ring... (1166)
- YADRO представила на ЦИПР первую... (1292)
- Продажи электромобилей Tesla валятся по всей... (1172)
- В России появится стильный кроссовер с... (1051)
- Snapdragon 8 Elite захватил майский топ в... (1082)
- YADRO и билайн продемонстрировали на ЦИПР... (1220)
- Белорусские Geely отдают в России с большими... (1340)
- GeForce RTX 5090 больше не самая мощная... (1093)
- В России может появиться новая экономичная... (1283)
- Дилеры продают внедорожники Tank 300 и Tank... (1012)
- Новый Nissan Juke можно купить в России за... (1190)
- Palit и Lynk+ показали модульную систему... (1049)
- Ученые увидели в DeepSeek огромный потенциал... (1121)
- «До мурашек»: официальный трейлер Summer... (919)
- Kia отзывает десятки тысяч машин в России... (1153)
- Fplus показала прототип российской игровой... (1107)
Классические компьютеры побеждают квантовые: прорыв в понимании границ квантовых и классических вычислений
Дата: 2024-10-31 23:05
Группа исследователей из Центра вычислительной квантовой физики (CCQ) при Институте Флэтайрон недавно раскрыла причины своего успеха в решении задачи, ранее считавшейся эксклюзивной для квантовых компьютеров, с помощью классического компьютера. Их результаты, опубликованные в Physical Review Letters, демонстрируют, что конкретная двумерная квантовая система переворачивающихся магнитов проявляет поведение, ранее наблюдаемое только в одномерных системах.
Это неожиданное открытие имеет важное значение для понимания границы между возможностями квантовых и классических компьютеров. Ведущий автор исследования, Джозеф Тиндалл, научный сотрудник CCQ, отмечает: «Существует граница, которая разделяет то, что можно сделать с помощью квантовых вычислений, и то, что можно сделать с помощью классических компьютеров. Наша работа помогает немного прояснить эту границу».
Квантовые компьютеры, использующие принципы квантовой механики, обещают значительные преимущества в вычислительной мощности и скорости по сравнению с классическими компьютерами. Однако квантовая технология всё ещё находится в зачаточном состоянии, и учёные продолжают исследовать, где квантовые компьютеры могут иметь преимущество.

В июне 2023 года исследователи IBM опубликовали статью в журнале Nature, в которой подробно описывался эксперимент с моделированием системы массива крошечных переворачивающихся магнитов, эволюционирующей с течением времени. Они утверждали, что эта симуляция осуществима только с квантовым компьютером. Тиндалл и его коллеги, используя свои алгоритмы для решения сложных квантовых задач с помощью классических компьютеров, решили эту задачу всего за две недели, доказав, что её можно решить даже на смартфоне.
Тиндалл и его соавтор Драйс Селс из Института Флэтайрон и Нью-Йоркского университета затем исследовали, почему эту систему можно так легко решить с помощью классического компьютера. Они обнаружили, что система проявляет ограничение, которое может возникнуть при особых обстоятельствах в замкнутых квантовых системах. Ограничение уменьшает количество запутанности, делая задачу достаточно простой для описания классическими методами.
Тиндалл объясняет: «В этой системе магниты не будут просто внезапно вскакивать. Вместо этого они фактически будут просто колебаться вокруг своего начального состояния, даже в очень длительных временных масштабах. Это довольно интересно с точки зрения физики, потому что это означает, что система остаётся в состоянии, которое имеет очень специфическую структуру, а не просто полностью беспорядочно».
Результаты исследования показывают, что ограничение может проявиться в ряде двумерных квантовых систем. Математическая модель, разработанная Тиндаллом и Селсом, предлагает ценный инструмент для понимания физики, происходящей в этих системах. Кроме того, код, используемый в статье, может предоставить инструмент для сравнительного анализа, который учёные могут использовать при разработке новых компьютерных симуляций для других квантовых проблем.
Это исследование помогает лучше понять границу между возможностями квантовых и классических компьютеров и обеспечивает основу для тестирования новых квантовых симуляций. Как отмечает Тиндалл, «одним из больших открытых вопросов в квантовой физике является понимание того, когда запутанность растет быстро, а когда нет. Этот эксперимент даёт хорошее понимание примера, в котором мы не получили крупномасштабной запутанности из-за используемой модели и двумерной структуры квантового процессора».
Подробнее на iXBT
Предыдущие новости
Прорыв в квантовой механике: исследователи обнаружили новый фазовый переход в «магии» квантовых состояний
Группа исследователей из Мэрилендского университета, NIST, IonQ Inc. и Квантового центра Дьюка совершила значительный прорыв в понимании квантовой механики и информации, продемонстрировав новое поведение квантовых состояний при воздействии когерентных ошибок. «Магия» квантовых состояний, описывающая степень их отклонения от состояний стабилизатора, имеет решающее значение для...
Из-за своих высказываний Intel потеряла гигантскую скидку у TSMC, которая сейчас компании очень пригодилась бы
Компания Intel сейчас производит все свои новые потребительские процессоры на мощностях TSMC. И похоже, это можно назвать злой иронией, потому что несколько лет назад Intel потеряла гигантскую скидку у TSMC из-за своих высказываний. создано Gemini По данным Reuters, в 2021 году TSMC предложила Intel невероятную скидку в 40% на продукцию, выпущенную по тогда ещё свежайшему...
Китайские учёные создали самоочищающийся электрод
Китайские исследователи разработали инновационный самоочищающийся электрод, который позволяет осуществлять высокостабильный синтез щелочноземельных перекисей металлов (MO2, M=Ca, Sr, Ba). Эта разработка, опубликованная в журнале Nature Nanotechnology, может значительно снизить экономические потери и риски взрыва, связанные с транспортировкой и хранением перекиси водорода...
Новая эра ранней диагностики заболеваний: высокочувствительный биосенсор на основе ДНК-наноструктур
Новая стратегия обнаружения микроРНК, основанная на лигировании алкин-азидного циклоприсоединения (SPAAC) с помощью дезинтеграции наноструктур ДНК, была разработана исследователями из Института биомедицинской инженерии и технологий Сучжоу (SIBET) Китайской академии наук. Эта технология может значительно улучшить раннюю диагностику и прогнозирование заболеваний, поскольку...