- OpenAI пока не будет подавать в суд на... (701)
- OpenAI пока не побудет подавать в суд на... (537)
- DeepSeek за неделю стал вторым по... (458)
- Онтарио разорвёт контракт со SpaceX на $68... (653)
- Xiaomi отправила 10 моделей смартфонов на... (827)
- Энтузиаст создал клиент Discord для древних... (593)
- Задняя многорычажная подвеска, металлический... (715)
- Samsung Galaxy S25 Ultra оказался хуже... (723)
- Новая статья: Обзор HONOR X9c: самый живучий... (663)
- Шедевральная RPG с отличной... (715)
- Учёные из китайско-российского университета... (674)
- Слухи: следующий выпуск State of Play... (687)
- Биткоин восстановился до $100 000 после... (788)
- Размах и хардкор с душой: критики вынесли... (809)
- Заменитель Toyota RAV4 от GAC скоро появится... (933)
- Starship на Марсе в 2029: амбициозный план... (741)
Учёные создали 3D-печатную модель мозга для изучения нейронных сетей
Дата: 2025-02-01 23:53
Учёные Делфтского технического университета в Нидерландах разработали 3D-печатную модель мозга, которая позволяет нейронам расти и формировать сети, подобно тому, как это происходит в реальном мозге. Эта разработка использует крошечные наностолбики для имитации мягкой нервной ткани и волокон внеклеточного матрикса мозга.
Традиционные чашки Петри, используемые для выращивания клеток, плоские и жёсткие, что не соответствует мягкой, волокнистой среде мозга. Команда создала массивы наностолбиков с помощью двухфотонной полимеризации – метода 3D-печати с наноточностью. Эти столбики, каждый из которых в тысячу раз тоньше человеческого волоса, расположены как крошечные леса на поверхности.
Иллюстрация: нейросеть DALL-E 3Изменяя ширину и высоту столбиков, исследователи настроили их эффективный модуль сдвига, механическое свойство, которое ощущают клетки при перемещении по поверхности микро- или наноструктур. «Это обманывает нейроны, заставляя их "думать", что они находятся в мягкой, похожей на мозг среде, хотя сам материал наностолбиков жёсткий», – объясняет руководитель исследования доцент Анджело Аккардо.
Для проверки модели учёные вырастили три различных типа нейронных клеток на наностолбиках. В отличие от традиционных плоских чашек Петри, где нейроны росли в случайных направлениях, на 3D-печатных массивах наностолбиков все три типа клеток росли более организованно, формируя сети под определёнными углами.
Исследование также выявило новые данные о конусах роста нейронов – структурах, направляющих растущие нейроны при поиске новых соединений. На наностолбиках конусы роста направляли длинные отростки во всех направлениях, что больше напоминает процессы в реальном мозге.
Георг Фламуракис, первый автор исследования, отмечает, что созданная среда способствовала созреванию нейронов. Нейронные клетки-предшественники, выращенные на столбиках, показали более высокий уровень маркера зрелых нейронов по сравнению с клетками на плоских поверхностях.
Разработанная модель может предложить новые возможности для изучения различий между здоровыми нейронными сетями и сетями, связанными с неврологическими расстройствами, такими как болезнь Альцгеймера, Паркинсона и расстройства аутистического спектра.
Подробнее на iXBT
Предыдущие новости
Ни гамма-всплеск, ни сверхновая: астрономы обнаружили новый тип космического взрыва
В апреле 2024 года космический рентгеновский телескоп «Эйнштейн», разработанный Китайской академией наук в сотрудничестве с Европейским космическим агентством и Институтом внеземной физики Макса Планка, зафиксировал необычное космическое событие, получившее обозначение EP240408A. Международная команда астрономов провела тщательное исследование этого явления с использованием...
Квантовая физика помогла создать сверхточный атомный термометр
Учёные из Национального института стандартов и технологий США (NIST) сообщили о создании наиболее точного и не требующего калибровки атомного термометра, который может найти применение в науке, космосе и производстве. Работа прибора строится на принципах квантовой физики и поэтому безупречна. Современные научные термометры требуют длительной калибровки и даже в этом случае...
Искусственный интеллект помогает ловить гравитационные волны: новый метод анализа данных LIGO на пути к разгадке тайн Вселенной
Учёные Калифорнийского университета в Риверсайде разработали новый метод машинного обучения для анализа данных гравитационно-волновой обсерватории LIGO. Исследователи представили свою работу на недавнем семинаре IEEE по большим данным, продемонстрировав новый подход к поиску закономерностей во вспомогательных каналах данных Лазерно-интерферометрической гравитационно-волновой...
Никакого чуда китайская нейросеть DeepSeek из себя не представляет? Затраты на её обучение могли быть в 400 раз выше заявленных
Возможно, китайская языковая модель DeepSeek, запуск которой обвалил фондовый рынок США и привёл к падению капитализации Nvidia на невероятные 600 млрд долларов, на самом деле обошлась китайской компании не в разы, а на порядки дороже, чем сообщалось. создано DALL-E Напомним, затраты на обучение модели якобы составили всего 5-6 млн долларов, что поражает на фоне сотен...