- В Южной Корее начали продавать съедобные... (5023)
- Человечество впервые «увидело» тёмную... (6812)
- Защищённые смартфоны OSCAL TANK 1, Pilot 3 и... (4016)
- SoftBank завершила поглощение разработчика... (3613)
- Представлены флагманы Poco F8 Pro и F8 Ultra... (4498)
- Последний эпизод The Long Dark не выйдет в... (4843)
- Удалять приложения Windows 11 станет... (4932)
- Qualcomm представила заторможенный... (3631)
- «Мы не Enron»: Хуанг сделал странное... (4901)
- Российская Neiry представила управляемых... (4986)
- Представлена 35-мм плёночная камера Kodak... (3725)
- «Выглядит словно пришелец из Bloodborne»:... (3604)
- В Windows 11 появилось централизованное... (3416)
- Первый завод TSMC в США внезапно встал из-за... (4731)
- Dell резко подняла прогноз выручки от... (5770)
- В Польше заподозрили, что Apple... (3516)
Учёные создали 3D-печатную модель мозга для изучения нейронных сетей
Дата: 2025-02-01 23:53
Учёные Делфтского технического университета в Нидерландах разработали 3D-печатную модель мозга, которая позволяет нейронам расти и формировать сети, подобно тому, как это происходит в реальном мозге. Эта разработка использует крошечные наностолбики для имитации мягкой нервной ткани и волокон внеклеточного матрикса мозга.
Традиционные чашки Петри, используемые для выращивания клеток, плоские и жёсткие, что не соответствует мягкой, волокнистой среде мозга. Команда создала массивы наностолбиков с помощью двухфотонной полимеризации – метода 3D-печати с наноточностью. Эти столбики, каждый из которых в тысячу раз тоньше человеческого волоса, расположены как крошечные леса на поверхности.
Иллюстрация: нейросеть DALL-E 3 Изменяя ширину и высоту столбиков, исследователи настроили их эффективный модуль сдвига, механическое свойство, которое ощущают клетки при перемещении по поверхности микро- или наноструктур. «Это обманывает нейроны, заставляя их "думать", что они находятся в мягкой, похожей на мозг среде, хотя сам материал наностолбиков жёсткий», – объясняет руководитель исследования доцент Анджело Аккардо.
Для проверки модели учёные вырастили три различных типа нейронных клеток на наностолбиках. В отличие от традиционных плоских чашек Петри, где нейроны росли в случайных направлениях, на 3D-печатных массивах наностолбиков все три типа клеток росли более организованно, формируя сети под определёнными углами.
Исследование также выявило новые данные о конусах роста нейронов – структурах, направляющих растущие нейроны при поиске новых соединений. На наностолбиках конусы роста направляли длинные отростки во всех направлениях, что больше напоминает процессы в реальном мозге.
Георг Фламуракис, первый автор исследования, отмечает, что созданная среда способствовала созреванию нейронов. Нейронные клетки-предшественники, выращенные на столбиках, показали более высокий уровень маркера зрелых нейронов по сравнению с клетками на плоских поверхностях.
Разработанная модель может предложить новые возможности для изучения различий между здоровыми нейронными сетями и сетями, связанными с неврологическими расстройствами, такими как болезнь Альцгеймера, Паркинсона и расстройства аутистического спектра.
Подробнее на iXBT
Предыдущие новости
Ни гамма-всплеск, ни сверхновая: астрономы обнаружили новый тип космического взрыва
В апреле 2024 года космический рентгеновский телескоп «Эйнштейн», разработанный Китайской академией наук в сотрудничестве с Европейским космическим агентством и Институтом внеземной физики Макса Планка, зафиксировал необычное космическое событие, получившее обозначение EP240408A. Международная команда астрономов провела тщательное исследование этого явления с использованием...
Квантовая физика помогла создать сверхточный атомный термометр
Учёные из Национального института стандартов и технологий США (NIST) сообщили о создании наиболее точного и не требующего калибровки атомного термометра, который может найти применение в науке, космосе и производстве. Работа прибора строится на принципах квантовой физики и поэтому безупречна. Современные научные термометры требуют длительной калибровки и даже в этом случае...
Искусственный интеллект помогает ловить гравитационные волны: новый метод анализа данных LIGO на пути к разгадке тайн Вселенной
Учёные Калифорнийского университета в Риверсайде разработали новый метод машинного обучения для анализа данных гравитационно-волновой обсерватории LIGO. Исследователи представили свою работу на недавнем семинаре IEEE по большим данным, продемонстрировав новый подход к поиску закономерностей во вспомогательных каналах данных Лазерно-интерферометрической гравитационно-волновой...
Никакого чуда китайская нейросеть DeepSeek из себя не представляет? Затраты на её обучение могли быть в 400 раз выше заявленных
Возможно, китайская языковая модель DeepSeek, запуск которой обвалил фондовый рынок США и привёл к падению капитализации Nvidia на невероятные 600 млрд долларов, на самом деле обошлась китайской компании не в разы, а на порядки дороже, чем сообщалось. создано DALL-E Напомним, затраты на обучение модели якобы составили всего 5-6 млн долларов, что поражает на фоне сотен...