- ABI Research: из-за пошлин Трампа США... (757)
- NASA готовится к анализу марсианских... (768)
- Точные координаты и неожиданные связи 72... (758)
- Ученые взвесили фотон: результаты шокируют и... (732)
- Новый поисковик Google с ИИ выходит из... (632)
- Роботы-консультанты Chery: будущее... (729)
- DeepVoid – прорыв в анализе крупномасштабной... (674)
- Глава Nvidia впервые за десять лет получил... (733)
- Больше и мощнее Land Cruiser. Представлен... (673)
- Даже торговая война не смогла остановить... (714)
- Бесплатная энергия из неба? Японские ученые... (647)
- Водородный гигант XCIENT Fuel Cell от... (700)
- Дубай и Microsoft строят мега-дата-центр за... (593)
- Десятилетия без перезарядки: Южная Корея... (572)
- «Мы на пороге разгадки одной из величайших... (596)
- Производительность i9 за разумные деньги?... (599)
Новые модели Phi 4 от Microsoft позволят создавать «умные» приложения даже на слабых устройствах
Дата: 2025-05-01 10:25
Microsoft представила серию новых открытых моделей искусственного интеллекта, продемонстрировав значительный прогресс в области доступных и эффективных решений для разработки приложений. Анонс включает три модели семейства Phi 4, ориентированные на логическое мышление: Phi 4 mini reasoning, Phi 4 reasoning и Phi 4 reasoning plus. Эти модели призваны расширить возможности разработчиков, особенно тех, кто работает над приложениями для устройств с ограниченными вычислительными ресурсами.
Ключевым аспектом представленных моделей является способность к более тщательному анализу и проверке фактов при решении сложных задач – именно поэтому они классифицируются как «модели рассуждения». Microsoft впервые представила серию Phi, ориентированную на создание компактных, но мощных моделей, ровно год назад, в апреле 2024 года, и новые разработки являются логичным продолжением этой стратегии.
Самая компактная из представленных моделей, Phi 4 mini reasoning, насчитывает около 3,8 миллиардов параметров и была обучена на примерно миллионе синтетических математических задач, сгенерированных моделью R1 от китайского стартапа DeepSeek. Microsoft позиционирует её как идеальное решение для образовательных приложений, в частности, для реализации функций «встроенного репетитора» на маломощных устройствах. Количество параметров в модели, как правило, коррелирует с её способностью решать задачи, и модели с большим количеством параметров обычно демонстрируют более высокую производительность.

Модель Phi 4 reasoning, обладающая 14 миллиардами параметров, обучалась на высококачественных веб-данных и тщательно отобранных примерах из модели o3-mini, разработанной OpenAI. Microsoft отмечает, что эта модель наиболее эффективна в задачах, связанных с математикой, наукой и программированием.
Наиболее впечатляющим достижением стала модель Phi 4 reasoning plus. Фактически, это адаптированная версия ранее выпущенной Microsoft модели Phi-4, перенастроенная для повышения точности в определённых задачах. По данным Microsoft, Phi 4 reasoning plus приближается по характеристикам к значительно более крупной модели R1 (с 671 миллиардом параметров). Внутреннее тестирование компании также показало, что Phi 4 reasoning plus демонстрирует сопоставимые результаты с o3-mini на тесте OmniMath, оценивающем математические навыки.
Все три модели – Phi 4 mini reasoning, Phi 4 reasoning и Phi 4 reasoning plus – уже доступны на платформе для разработчиков AI Hugging Face, вместе с подробными техническими отчётами, описывающими процесс обучения и характеристики моделей.
В своём блоге Microsoft подчеркнула, что новые модели достигли баланса между размером и производительностью благодаря использованию методов дистилляции знаний, обучения с подкреплением и высококачественных данных. Это позволяет даже устройствам с ограниченными ресурсами эффективно выполнять сложные задачи, требующие логики и анализа.
Подробнее на iXBT
Предыдущие новости
«Железный» уже приступил к работе. Умный, мощный и похожий на человека робот Iron имеет 60 суставов, 200 степеней свободы и вычислительную мощность в 3000 TOPS
Xpeng представила своего новейшего гуманоидного робота Iron на Шанхайском автосалоне 2025 года. Он работает на основе фирменного чипа Turing AI от Xpeng, имеет 60 суставов, 200 степеней свободы и впечатляющую вычислительную мощность в 3000 TOPS. Фото Xpeng По данным Xpeng, Iron уже работает на автомобильных производственных линиях, помогая в сборке электромобилей. Iron...
MIT ускорил квантовые вычисления в 10 раз: новый чип приближает эру сверхнадёжных компьютеров
Команда учёных из Массачусетского технологического института (MIT) сообщила о ключевом достижении в области квантовых вычислений. Им удалось создать сверхпроводящую систему с рекордно сильной нелинейной связью между искусственными атомами и фотонами, что позволит ускорить обработку квантовой информации до нескольких наносекунд. Этот прогресс открывает путь к решению одной из...
Новый, безопасный мир, в котором аккумуляторы не загораются и не взрываются. CATL стала первой компанией, которая соответствует новому стандарту
Крупнейший в мире производитель аккумуляторов CATL стал первой компанией, которая выполнила требования новейшего китайского национального стандарта безопасности No Fire, No Explosion. Самым большим изменением новых правил является требование к термодиффузионному тесту. Новый стандарт требует, чтобы аккумуляторы не загорались и не взрывались при тепловом разгоне. Дым,...
Гонка токенов: Meta* и Cerebras Systems запускают Llama API с рекордной скоростью обработки
Meta* объявила о стратегическом партнёрстве с Cerebras Systems для запуска Llama API — сервиса, который обеспечивает вывод данных ИИ со скоростью до 18 раз выше, чем у традиционных GPU-решений. Анонс сделан на первой конференции для разработчиков LlamaCon и знаменует выход Meta в рынок коммерческого инференса, где доминируют OpenAI, Google и Anthropic. Для компании это первый...