- Один мощный толчок: как карликовая галактика... (1586)
- IBM не собирается заменять сотрудников на... (1651)
- Астрономы предположили, что некоторые белые... (1745)
- Тысячи пользователей пожаловались на сбои в... (1780)
- Ту самую компьютерную колонку из 90-х... (1462)
- Радиотелескоп MeerKAT впервые детально... (1599)
- Календарь релизов — 16–22 февраля: Styx:... (1920)
- Intel не собирается забрасывать GPU.... (1898)
- Apple проведёт презентацию 4 марта —... (1476)
- Две Assassin’s Creed, эвакуационный шутер по... (1676)
- Blizzard: несмотря на 14 лет с релиза, в... (1830)
- YouTube усугубил войну с блокировщиками... (1844)
- DeepRed: новая архитектура для оценки... (1737)
- Ждём новые MacBook, iPad Air и iPhone 17e:... (1389)
- Астрономы впервые детально исследовали... (1695)
- «Атомный ИИ»: Deep Atomic предлагает строить... (1459)
Учёные впервые измерили «квантовый эффект бабочки» и рост хаоса во времени
Дата: 2026-02-18 22:07
Группа физиков из Китая впервые экспериментально измерила, как хаос экспоненциально нарастает в квантовой системе при попытке обратить её эволюцию во времени.
Исследователи изучали так называемый «квантовый эффект бабочки» — явление, при котором малейшие ошибки или возмущения в начальных условиях квантовой системы приводят к резкому росту хаоса и невозможности точно восстановить исходное состояние. Для этого команда использовала твердотельный ядерный магнитный резонанс (NMR), управляя спинами атомных ядер с помощью магнитных полей и радиочастотных импульсов.
Иллюстрация: Nano Banana В ходе эксперимента учёные наблюдали, как информация о начальном состоянии «расплывается» по системе за счёт квантовой запутанности, а затем пытались обратить эволюцию назад. Даже при идеальных уравнениях квантовой механики малейшие ошибки приводили к экспоненциальному росту хаоса — этот процесс удалось количественно описать с помощью специального коррелятора (OTOC).
Для анализа данных была применена новая теоретическая модель на основе «скрэмблонов» — коллективных возбуждений, отвечающих за распространение информации в системе. Это позволило скорректировать экспериментальные ошибки и впервые чётко зафиксировать экспоненциальный рост хаоса при обратимости времени.
Результаты важны для развития квантовых симуляций и вычислений, где контроль над хаосом и ошибками критичен. Работа также открывает новые возможности для изучения фундаментальных свойств квантового мира.
Подробнее на iXBT
Предыдущие новости
Чтобы в Россию нельзя было бесконтрольно ввозить небезопасную продукцию. Росаккредитация опровергает сообщения СМИ по параллельному импорту и разъясняет ситуацию
Росаккредитация опубликовала официальное заявление, в котором она опровергает предыдущие сообщения СМИ и разъясняет решения по отдельным органам по сертификации Киргизии Росаккредитация принимает решения в рамках Плана обеления экономики и в соответствии с поручением Президента РФ. Служба подчеркивает: ее внимание направлено исключительно на выявление сертификатов, не...
Учёные создали «облако в коробке»: новый шаг к пониманию погоды и климата
Облака остаются для науки одной из самых сложных загадок. Как именно формируются капли, почему одни облака дают дождь, а другие нет, и как всё это влияет на климат? Чтобы ответить на эти вопросы, команда из Брукхейвенской национальной лаборатории (США) построила уникальную «конвекционную камеру» — по сути, ящик, в котором можно создавать и контролировать облака. Внутри камеры...
Microsoft и Ericsson работают вместе для более глубокой интеграции технологий 5G в Windows 11
Компании Microsoft и Ericsson объявили о том, что они объединили усилия для улучшения 5G на компьютерах с Windows 11 и поддержкой ИИ. Новая инициатива призвана интегрировать возможности 5G от Ericsson непосредственно в Windows 11. В частности, речь идёт о связи Microsoft Intune — облачной платформы управления устройствами для ИТ-команд — и платформы Ericsson Enterprise 5G...
Физики измерили ширину протона с рекордной точностью — Стандартная модель снова выдержала проверку
Группа исследователей из Германии провела самое точное на сегодня измерение ширины (зарядового радиуса) протона — одной из ключевых частиц материи. Для этого они использовали лазерную спектроскопию атома водорода, фиксируя переходы между энергетическими уровнями с беспрецедентной точностью. Результат: радиус протона составил 0,840615 фемтометра, что примерно в 2,5 раза точнее...