Добро пожаловать на форум PHP программистов!
За последние 24 часа нас посетили 20007 программистов и 1651 робот. Сейчас ищут 1517 программистов ...
Приступая к работе

SVM::crossvalidate - Test training params on subsets of the training data.

Вернуться к: SVM

SVM::crossvalidate

(PECL svm >= 0.1.0)

SVM::crossvalidateTest training params on subsets of the training data.

Описание

public float svm::crossvalidate ( array $problem , int $number_of_folds )

Crossvalidate can be used to test the effectiveness of the current parameter set on a subset of the training data. Given a problem set and a n "folds", it separates the problem set into n subsets, and the repeatedly trains on one subset and tests on another. While the accuracy will generally be lower than a SVM trained on the enter data set, the accuracy score returned should be relatively useful, so it can be used to test different training parameters.

Список параметров

problem

The problem data. This can either be in the form of an array, the URL of an SVMLight formatted file, or a stream to an opened SVMLight formatted datasource.

number_of_folds

The number of sets the data should be divided into and cross tested. A higher number means smaller training sets and less reliability. 5 is a good number to start with.

Возвращаемые значения

The correct percentage, expressed as a floating point number from 0-1. In the case of NU_SVC or EPSILON_SVR kernels the mean squared error will returned instead.

Смотрите также



Вернуться к: SVM

© 2025 «PHP.RU — Сообщество PHP-Программистов»
Главная | Форум | Реклама на сайте | Контакты VIP Сувениры
Разработка компании ODware