- Google показала Xreal Project Aura —... (664)
- Google показала трио смарт-очков на Android... (1027)
- Google показала тройку XR-очков: одни только... (1137)
- Соцсеть X заблокировала рекламный аккаунт ЕС... (686)
- Соцсеть X заброкировала рекламный аккаунт ЕС... (692)
- Хиты 2025 года против гача-игр прошлого — на... (793)
- Сервис Apple Fitness+ появится в 28 новых... (1124)
- Вскоре появятся чипы Intel Made in India.... (960)
- Путешествие Загрея для Мелинои: моддер... (737)
- Компактный игровой планшет на платформе... (1104)
- 7500 мАч, 512 ГБ памяти, немерцающий экран и... (1109)
- Илон Маск опроверг слухи: SpaceX не гонится... (724)
- Невероятно, но факт: индийская Tata будет... (838)
- Honor выпустила смартфон Magic8 Lite с... (1062)
- За Warner Bros разгорелась агрессивная битва... (629)
- Оперативка по цене самой мощной видеокарты:... (669)
Учёные нашли способ точнее изучать чёрные дыры с помощью машинного обучения
Дата: 2025-04-22 20:03
Гравитационно-волновые обсерватории, такие как LIGO и Virgo, десятилетиями фиксируют рябь пространства-времени от слияний чёрных дыр и нейтронных звезд. Однако новое исследование международной группы учёных выявило скрытую проблему: традиционный метод анализа данных может искажать результаты.
Оказывается, ошибка кроется в простом действии — присвоении объектам в двойных системах меток «1» и «2» на основе их массы. Этот подход, похожий на сортировку деталей без учёта их взаимосвязей, в 10% случаев приводит к неверной интерпретации, словно автономный автомобиль путает пешехода с дорожным знаком.
До сих пор астрофизики маркировали объекты в каждой паре отдельно, ориентируясь лишь на их массу — более тяжёлый становился «объектом 1», лёгкий — «объектом 2». Но гравитационные волны несут информацию не только о массе, но и о спине (вращении) объектов, а также их природе. Упрощённая маркировка, как выяснилось, создаёт систематические искажения — например, «смазывает» данные о спине или мешает отличить нейтронную звезду от чёрной дыры.
Иллюстрация: NOIRLab Команда предложила решать проблему не для каждого события по отдельности, а анализировать все данные разом, используя алгоритмы машинного обучения, учитывая контекст всего массива данных.
Такой подход — группировка данных с учётом дополнительных условий — позволил устранить до 50% неточностей в измерении спинов чёрных дыр. Распределения параметров стали более предсказуемыми, исчезли «паразитные» пики и длинные «хвосты» в данных. Например, если раньше некоторые результаты напоминали помехи, то теперь они стали чёткими. Это упрощает идентификацию природы объектов: в спорных случаях станет легче определить, где чёрная дыра, а где нейтронная звезда.
По оценкам учёных, пересмотр данных LIGO/Virgo с новым методом может изменить интерпретацию каждого десятого события. Это важно для понимания эволюции двойных систем — например, как пары чёрных дыр формируются и сливаются в условиях экстремальной гравитации. В ближайшие годы подход планируют внедрить в анализ данных обсерваторий следующего поколения, таких как KAGRA и будущий Cosmic Explorer.
Подробнее на iXBT
Предыдущие новости
На это ушло 10 лет: представлен первый бензиновый двигатель V8 от Great Wall Motor, он должен дебютировать в новейшем Tank
Китайская компания Great Wall Motor представила свой первый бензиновый двигатель V8 собственной разработки с рабочим объемом 4,0 литра. Этот шаг можно было бы назвать неожиданным на фоне мирового тренда перехода к электрификации и уменьшения объема двигателей, однако впервые о разработке компания рассказала еще прошлой осенью, пообещав представить новинку в апреле. Над...
Эксперимент в ЦЕРН превратили в детектор тёмной материи: установка MUonE обнаружила скрытый потенциал для поиска неуловимых частиц
Учёные обнаружили, что эксперимент MUonE в ЦЕРН, изначально созданный для изучения свойств мюонов, может стать ключом к обнаружению тёмной материи — таинственной субстанции, составляющей четверть Вселенной. Новое исследование показывает, что существующая установка способна фиксировать редкие события, указывающие на взаимодействие с невидимыми частицами, без необходимости...
Жизнь началась в космосе? Гавайские учёные нашли ключевые молекулы метаболизма в условиях межзвёздной пустоты
Учёные из Гавайского университета обнаружили, что ключевые молекулы, лежащие в основе обмена веществ у всех живых организмов, могли сформироваться в глубинах космоса задолго до появления Земли. Это открытие переворачивает представления о том, как зародились «строительные блоки» жизни — они, вероятно, возникли в ледяной пустоте межзвёздного пространства, а на молодую планету...
Стартап Cluely привлёк $5,3 млн на развитие ИИ-инструмента для «обмана во всём». Основатели бросили университет из-за дисциплинарных санкций
21-летний Чангин «Рой» Ли объявил о привлечении $5,3 млн начального финансирования для своего стартапа Cluely. Проект предлагает ИИ-инструмент, позволяющий «жульничать на экзаменах, собеседованиях и в рабочих задачах». Основой для Cluely стал сервис Interview Coder, созданный Ли и его сооснователем Нилом Шанмугамом во время учёбы в Колумбийском университете. Из-за разработки...